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Venturi-assisted liquid removal from the sump of a gas well
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Abstract

Gas wells produce not only gas, but also a small amount of liquid which, being dense, can collect at the
bottom of the well. The well may slowly fill with liquid, and gas production is reduced, or stopped com-
pletely, when the perforations through which gas flows into the well are submerged. A simple Venturi pump
can be used to re-disperse the liquid into the gas flowing to the surface. The pressure available for lifting
liquid into the Venturi throat is not large, and it is therefore advantageous if gas is mixed into the liquid,
thereby reducing the effective density of the mixture which has to be lifted. An analysis based solely on
Bernoulli�s equation and hydrostatic pressures is surprisingly rich, and gives good agreement with experi-
ment when empirical relations for turbulent wall friction are included.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Gas flowing from porous rock into a gas well is often accompanied by liquid. The gas flows to
the earth�s surface, and sufficiently small liquid droplets will be carried upwards by the gas. Larger
droplets sediment under gravity to the bottom of the well, where the liquid level rises slowly.
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Eventually the liquid may reach a gas-bearing rock stratum and block the flow of gas. Gas pro-
duction is reduced or ceases altogether, and the well becomes uneconomic.

One way to prevent this is to pump liquid from the bottom of the well up to the surface by
means of an electric submersible pump. Such a system is expensive to install and maintain, and
may not be economic if the gas production of the well is small. Here we describe a device, based
on a Venturi pump, which can atomize liquid and thereby suspend it in the main gas flow (Sher-
wood et al., 2003). The analysis is based on nothing more complicated than Bernoulli�s equation
and hydrostatic pressures, yet it predicts a rich variety of behaviour and appears to be qualita-
tively in agreement with the results of experiments described in Section 7. Quantitative agreement
is surprisingly good when turbulent pressure losses are included in the analysis.

The very simplest form of the device is shown in Fig. 1. A Venturi is introduced into the main
gas flow, and a region of low pressure pG is created at the Venturi throat, from where a pipe GB
descends to the liquid at the sump of the well, a distance h = h1 + h2 below the Venturi. The sur-
face of the liquid is at a pressure pB. If the liquid density is qL and g is the acceleration due to
gravity, liquid will start to flow up the pipe BG if the pressure difference P = pB � pG can over-
come the hydrostatic head, i.e. if
P ¼ pB � pG > qLgh ¼ qLgðh1 þ h2Þ: ð1Þ

The Venturi pump lifts and atomizes liquid, in much the same manner as does a simple perfume

atomizer or a jet pump (Kay and Nedderman, 1974). However, if the gas flow rate is low, the pres-
sure difference P generated by the Venturi may be insufficient to lift liquid the required height h.
We cannot make h smaller by allowing the liquid level to rise within the well, since the pressure of
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Fig. 1. The lift pressure P = pB � pG is generated by a Venturi.
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the gas within the rock pores is often low. Only a small hydrostatic head of liquid within the well
suffices to block gas flow into the well from the pores of the surrounding rock. A rise in liquid level
therefore reduces the gas flow rate within the well and hence reduces the differential pressure gen-
erated by the Venturi. Similarly, there is nothing to be gained by moving the Venturi below the
top of the zone that produces gas. If liquid has risen to the bottom of the production zone,
and gas production is uniform over the height of this zone, then the gas flow rate through a Ven-
turi situated a distance h above the liquid would be proportional to h, and the Venturi differential
pressure would vary as h2, whereas the hydrostatic head that must be overcome is proportional to
h. It is therefore advantageous to make h as large as possible.

One way to reduce the pressure required to overcome the hydrostatic head may be to introduce
gas (of density qG < qL) into the vertical pipe BG at F, distance h1 < h above the surface of the
liquid, so that the density of the gas–liquid mixture in the pipe FG is reduced to q3 < qL, with
q3 sufficiently small that
Fig. 2
that o
P > qLgh1 þ q3gh2: ð2Þ

The Venturi pump can thereby raise the low density gas–liquid mixture a greater height than it
could pure liquid.

One might expect that it is best to make h1 as small as possible, but we shall see in Section 3.4
that this is not always so. In addition, for practical reasons we would normally want to keep the
gas inlet A (Fig. 2) well above the liquid surface B, the position of which may vary with time. The
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. As in Fig. 1, but gas now enters the main riser DG at H. The cross-sectional area of the main riser DG is A1, and
f the gas inlet AH is A2. The total height that liquid must be lifted is h = h1 + h2.
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engineer who designs such a lifting device has only four variables that he can change in order to
optimize the process: (i) the differential pressure P generated by the Venturi, which he can control
by his choice of the Venturi throat diameter; (ii) the position h1 of the gas inlet; (iii) the cross-
sectional area A2 of the gas inlet; and (iv) the cross-sectional area A1 of the main vertical pipe.

Our aim is to predict the rate at which liquid is lifted as a function of the various geometrical
factors and liquid properties. In Section 2 we use Bernoulli�s equation and hydrostatic pressures to
relate the various pressures and velocities within the device. Then in Section 3 we combine these
relations in order to predict the flow rates. Zero liquid flow rate is dealt with in Section 3.1, and
the equation predicting liquid flow rates when these are non-zero is obtained in Section 3.2. The
simpler case h1 = 0 is discussed in detail in Section 3.3, and the more general case h1 > 0 is con-
sidered in Section 3.4. In Section 4 we show that allowing gas to enter the main riser at several
points (rather than at just one) makes the positioning of the gas entrance less crucial, but reduces
the efficiency of the device. Then in Section 5 we show that the lifting of liquid is achieved only at
the cost of reduced pressures downstream of the Venturi.

We shall assume that the gas is incompressible: this approximation could be relaxed in a more
complete model. In general we neglect any motion of gas relative to liquid, except in Section 6
where the effects of such relative motion are investigated in a simple fashion by allowing a con-
stant relative velocity us between the two phases. The effects of viscosity and interfacial tension
are assumed negligible. In particular, we assume that wall friction is negligibly small, except in
Section 7 where turbulent wall friction will be considered when interpreting experimental results.

Some of the liquid atomized by the Venturi may subsequently contact the wellbore walls and
form a thin liquid film which flows back downwards, so the lifting process may be inefficient
and require several stages. We shall discuss only the initial lifting of liquid by the Venturi, and
not the global problem of how much of the atomised liquid reaches the surface: this latter problem
is more specific to the gas-well application which first generated our interest in Venturi atomizers.
Methods for re-dispersing any liquid films that form on the wellbore walls are considered by
Sherwood et al. (2003).
2. The pressures within the device

We consider the flow geometry shown in Fig. 2. The region CDE contains liquid of density qL
and the region ABH outside the device contains incompressible gas of density qG. We assume that
fluid flows in each pipe with a velocity which is uniform over the pipe cross-section, and we neglect
the possibility that liquid flow in the lower vertical pipe DE may be laminar, with a consequent
parabolic velocity profile.

The main pipe DEFG has cross-sectional area A1 and the liquid velocity in the lower pipe DE is
u1. The gas velocity is u2 in the inlet pipe H, which has area A2. Conservation of volume implies
that the velocity in the upper section of pipe GF must be
u3 ¼ u1 þ u2a2; ð3Þ
where
a2 ¼ A2=A1 ð4Þ
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and the density of the gas–liquid mixture in the upper pipe is
q3 ¼
qGu2A2 þ qLu1A1

u1A1 þ u2A2

¼ qGu2a2 þ qLu1
u1 þ u2a2

: ð5Þ
If we allow relative motion between liquid and gas in GE, Eqs. (3) and (5) require modification, as
discussed in Section 6.

The pressure at B and C is pB. By Bernoulli�s equation, in the absence of losses the pressure at D
is
pD ¼ pB �
1

2
qLu

2
1: ð6Þ
More realistically, the pressure at D will be lower than predicted by Bernoulli, due to entry pres-
sure losses. These losses are often expressed in the form 1

2
KqLu

2
1, with K � 0.6 for an abrupt con-

traction, though this can easily be reduced to K < 0.1 by suitable machining of a smooth entrance
(Miller, 1978); we shall ignore such losses. In the absence of wall friction the pressures at A and F
are
pA ¼ pB � qGh1g; ð7Þ
pF ¼ pG þ q3h2g: ð8Þ
If the tube DE is filled with liquid, then
pE ¼ pD � qLh1g ¼ pB �
1

2
qLu

2
1 � qLgh1: ð9Þ
If instead the tube DE is filled with liquid only to a height h3, with u1 = 0, then
pE ¼ pD � qLh3g � qGðh1 � h3Þg ¼ pB � qLgh3 � qGðh1 � h3Þg: ð10Þ
By Bernoulli�s equation, the pressure at H is
pH ¼ pA � 1

2
qGu

2
2 ¼ pB � qGh1g �

1

2
qGu

2
2; ð11Þ
where again, as in (6), entry losses have been neglected.
We assume that viscous effects are negligible, and consider the momentum integral (Batchelor,

1967, Eq. 3.2.3) in the vertical (z) direction over a control volume JKML shown in Fig. 3. This
leads to
pE � pF ¼ q3u
2
3 � qLu

2
1 ¼ qLu1ðu3 � u1Þ þ qGu2u3a2 ¼ u1u2a2ðqL þ qGÞ þ qGu

2
2a

2
2; ð12Þ
where we have assumed that there is no relative velocity between gas and liquid, and that the pres-
sure is uniform over cross-sections JFK and MEL of the pipe. This latter approximation can be
more reasonably justified by using a larger control volume than that shown in Fig. 3, with JFK
and MEL positioned further downstream and upstream, respectively.

It is less obvious how to apply the momentum equation (over the same control volume) in the
horizontal (x) direction. The x momentum of gas coming from the inlet JM must be destroyed,
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Fig. 3. Detailed geometry of the junction at which gas enters the main riser.
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but if the force required to do this is spread over a large area of pipe wall opposite the entrance,
the increase in pressure will be negligibly small. We shall therefore neglect this increase. One
option at this point would be to assume that the gas pressure at the inlet JM is equal to the aver-
age pressure within the pipe, with pH ¼ 1

2
ðpE þ pFÞ. However, this leads to inconsistencies when

u1 = 0. Since it is important to be able to predict when liquid reaches the junction at E, we shall
instead assume
pH ¼ pE ð13Þ

so that if u1 > 0, by (9), (11) and (13),
qGh1g þ
1

2
qGu

2
2 ¼ qLh1g þ

1

2
qLu

2
1; u1 > 0: ð14Þ
If the pressure in the Venturi throat is insufficiently low, liquid will only be lifted a distance
h3 < h1 up the lower section DE of the riser, and u1 = 0, so that (10) holds, rather than (9). Instead
of (14) we find that the liquid level h3 is given by
ðqL � qGÞh3g ¼ 1

2
qGu

2
2; u1 ¼ 0: ð15Þ
An initial investigation assumed pH ¼ 1
2
ðpE þ pFÞ, rather than (13). Results were very similar to

those presented below, though the algebra was considerably more involved.
3. Solving the governing equations

We now combine the equations obtained in the previous section in order to investigate the oper-
ation of the device.
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3.1. Zero liquid flow, u1 = 0

If the pressure generated by the Venturi is insufficient to pump liquid, the device fails. Never-
theless, we first discuss this case in order to examine the gas flow predicted by the model.

The liquid velocity uL = 0 and there is only gas in the upper section of the main riser, so that
q3 = qG. From (12), (8), (11) and (13) we obtain
pB � pG ¼ qGgðh1 þ h2Þ þ
1

2
qGu

2
2 þ qGu

2
2a

2
2: ð16Þ
In this case we see that the pressure drop consists of a hydrostatic head, together with a pressure
drop 1

2
qGu

2
2 at the gas entry A (which is not recovered when gas emerges into the main riser from

the inlet H), and a pressure loss qGu
2
2a

2
2 required to give the gas its momentum in the vertical direc-

tion. This last term is negligible when a2 � 1. However, if a2 = 1 the pressure drop at the T-junc-
tion appears excessive, suggesting that any design based upon these equations will be conservative.

If the diameter of the wellbore is dw and that of the Venturi throat is bdw, and the velocity of gas
within the Venturi throat is uGV, then the main gas flow is subjected to a pressure drop
DP ¼ 1

2
qGu

2
GVð1� b4Þ ð17Þ
as it flows into the throat of the Venturi. Adding to (17) the hydrostatic pressure drop in the gas-
filled well we obtain
pB � pG ¼ 1

2
qGu

2
GVð1� b4Þ þ qGgðh1 þ h2Þ: ð18Þ
Comparing (16) and (18) we conclude that when a2 � 1 and b� 1 then in the absence of liquid
(i.e. if u1 = 0) the velocity u2 of gas in the inlet pipe is the same as the gas velocity uGV in the Ven-
turi throat. The gas velocity u3 = u2a2 in the main riser FG is therefore smaller than that in the
Venturi throat by a factor a2.

3.2. The governing equations when u1 > 0

Our main interest is in a device for which u1 > 0 so that liquid is pumped up to the Venturi
throat. We now combine the equations derived in Section 2 in order to obtain an equation giving
the velocity u1 at which liquid is raised in terms of the pressure difference P = pB � pG available
for lifting liquid.

In this case, by (12), (8) and (9),
pB � pG ¼ u1u2a2ðqL þ qGÞ þ qGu
2
2a

2
2 þ

1

2
qLu

2
1 þ qLgh1 þ q3h2g: ð19Þ
We can eliminate q3 from (19) by means of (5), but in order to simplify the analysis we assume
that qG � qL in terms associated with hydrostatic pressures (but not in terms associated with iner-
tia, since gas velocities may be high). Hence (19) becomes
P ¼ pB � pG ¼ u1u2a2ðqL þ qGÞ þ
1

2
qLu

2
1ð1þ 2a22Þ þ ð1þ 2a22ÞqLgh1 þ

h2gqLu1
u1 þ u2a2

ð20Þ
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and by (14)
qGu
2
2 ¼ qLu

2
1 þ 2qLh1g ð21Þ
so that
u2 ¼ u1
qL

qG

� �1=2

S; ð22Þ
where
S ¼ 1þ 2h1g
u21

� �1=2

: ð23Þ
Hence the velocity in the main riser is
u3 ¼ u1 þ a2u2 ¼ u1ð1þ bSÞ; ð24Þ

where
b ¼ a2ðqL=qGÞ
1=2

: ð25Þ

The liquid volume fraction /L in the main riser is
/L ¼ u1
u1 þ u2a2

¼ 1

1þ bS
: ð26Þ
We non-dimensionalize velocities by (2P/qL)
1/2 such that the non-dimensional liquid velocity is
û1 ¼ u1
qL

2P

� �1=2
ð27Þ
and we set
G ¼ h2gqL

P
; ĥ1 ¼ h1=h2: ð28Þ
G = 1 corresponds to the case in which the pressure P would be just capable of lifting liquid a
distance h2.

Eliminating u2 from (20) by means of (21) we obtain
P ¼ u21qL

2
1þ 2a22 þ 2b½1þ qG=qL�S
� �

þ ð1þ 2a22ÞqLgh1 þ
h2gqL

1þ bS
: ð29Þ
We assume that a2 � 1, but qL � qG and so b = a2(qL/qG)
1/2 is not negligible. Eq. (29) simpli-

fies to
P ¼ u21qL

2
ð1þ 2bSÞ þ qLgh1 þ

h2gqL

1þ bS
ð30Þ
or in non-dimensional form
1 ¼ û21ð1þ 2bSÞ þ Gĥ1 þ
G

1þ bS
; ð31Þ
where, by (23)
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S ¼ 1þ Gĥ1
û21

 !1=2

: ð32Þ
Eq. (31) gives us the non-dimensional liquid velocity û1 as a function of the non-dimensional pres-
sure G�1 and position ĥ1 at which gas enters, and is the key equation that we have been seeking.
Once u1 is known, the cross-sectional area A1 of the main riser can be chosen such that liquid vol-
umetric flowrate qL = u1A1 of the device exceeds the rate QL at which liquid is entering the well.

We now investigate (31) in more detail, first (Section 3.3) when h1 = 0, and then (Section 3.4)
for h1 > 0.

3.3. The case h1 = 0

We now assume h1 = 0, since one might intuitively expect that there is little point in putting the
gas entry higher than it need be. Eq. (31) becomes
1 ¼ û21ð1þ 2bÞ þ G
1þ b

ð33Þ
so that
û21 ¼
b� Gþ 1

ð1þ bÞð1þ 2bÞ : ð34Þ
We now investigate the effect of changing b at fixed G (i.e. at a fixed differential pressure P). Fig.
4 shows the liquid velocity û1 as a function of b, for various G. There are solutions of (33) only if
G < b + 1. Thus if b is small (corresponding to injection of only a small amount of gas) the device
will operate only if G � 1 is small. If we make b very large (while keeping a2 � 1) there is a solu-
tion of (33) with
û21 � ð1þ 2bÞ�1
; /L ¼ ð1þ bÞ�1 � 1: ð35Þ
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We note from Fig. 4 that for any given G there is an optimal b = bm such that u1 is maximised.
Differentiation of (33) gives
Fig
bm ¼ G� 1þ G2 � G
2

� �1=2

: ð36Þ
The maximum values of û21 when b = bm are shown in Fig. 5 (curve a). In the limit G!1 we find
bm � 2G; û21 �
1

8G
: ð37Þ
Note that bm = 2�1/2 when G = 1. If G < 1 the Venturi could lift liquid without any assistance
from gas, and the liquid velocity predicted by Bernoulli would be simply
û21 ¼ 1� G: ð38Þ

This velocity is also shown in Fig. 5 (curve b), and is tangent to the optimal results with gas (curve
a) at G ¼ 2

3
which corresponds to b = 0. From (36) we see that bm < 0 when G < 2

3
, and so we reject

the corresponding part of curve (a) of Fig. 5 as unphysical.

3.4. The case h1 > 0

We consider next the more general case h1 > 0. If the volumetric flow rate QLW of liquid enter-
ing the well is greater than the rate QL = u1A1 at which liquid is lifted by the Venturi pump, the
level of liquid at the base of the well will rise. Lifting will eventually cease when the gas inlet is
flooded with liquid. On the other hand, if QLW < A1u1 the liquid level will fall and the distance
h1 will increase. Clearly we require that as h1 decreases the liquid velocity u1 increases sufficiently
rapidly for the pump rate u1A1 to match the inflow rate QLW before h1 = 0 and the device is
flooded.

Numerical solutions of (31) are shown in Figs. 6–12. In the limit qLgh1 = P the pressure P is
only just able to lift liquid to the point of gas entry, and we note from (31) that û1 ! 0 as
Gh1/h2 ! 1. We can therefore find solutions to (31) only if
0 2 4 6
G
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P > h1gqL; ð39Þ

i.e. if
h1
h2

< G�1: ð40Þ
Fig. 6 shows the liquid velocity û1 for various values of b when G = 1.01. The results of the pre-
vious section correspond to h1 = 0 i.e. to results on the left-hand axis of Fig. 6. We see that the
liquid velocity u1 increases as b increases to b = bm = 0.7277, and then decreases for b > bm, as pre-
dicted in Section 3.3.

In general, for fixed b the liquid velocity decreases as h1 increases, as is required for a stable
equilibrium to be possible. However, we can just observe on curve (a) of Fig. 6 a region close
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to h1 = 0 where u1 increases with h1, and there is a value of h1 for which u1 attains a maximum.
This is much clearer on Fig. 7 (G = 2) and Fig. 8 (G = 10). We now investigate the location of this
maximum.

In the limit h1 � h2, then if û21 � Gh1=h2 the governing Eq. (31) can be expanded as
û21 ¼
1þ b� G

ð1þ bÞð1þ 2bÞ �
Gh1
h2

1þ b
1þ 2b

� Gb
2ð1þ bÞð1þ b� GÞ

� �
þO

h1
h2

� �2

: ð41Þ
The velocity û1 only decreases as h1 increases if
G < G1 ¼
2ð1þ bÞ3

4b2 þ 5bþ 2
¼ 1þ b

2
� b2

2ð4b2 þ 5bþ 2Þ
< 1þ b

2
: ð42Þ



0 0.02 0.04 0.06 0.08 0.1

10–4

10 –3

10 –2

10 –1

a 

b 
c 

d 

f 

e 

h1/h2

φ L

Fig. 10. The liquid volume fraction /L in the riser FG, for the case corresponding to Fig. 8. G = 10.0; (a) b = 9.5, (b)
b = 12.0, (c) b = 15.0, (d) b = bm = 18.74, (e) b = 50.0, and (f) b = 100.0.

0 0.2 0.4 0.6 0.8 1
10 –2

10–1

100

101

a 

b 

c 

d 
e 

f 

û 3

h1/h2
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We conclude that there are solutions with u1 > 0 for which u1 increases with h1 in a neighbour-
hood of h1 = 0 if
G1 < G < 1þ b: ð43Þ

However, from (42) we see that G1 is closely approximated by 1 + b/2, and so to a close approx-
imation (43) predicts that u1 increases with h1 near h1 = 0 if
G� 1 < b/2ðG� 1Þ: ð44Þ

This agrees with the results presented in Figs. 6–8.

At first sight it seems surprising that when (42) does not hold, an increase in h1 (i.e. an increase
in the total height that the liquid must be raised) leads to an increase in the liquid flow rate. But in
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Fig. 12. The mixture velocity û3 in the riser FG, for the case corresponding to Figs. 8 and 10. G = 10.0; (a) b = 9.5, (b)
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38 J.D. Sherwood, D.I.H. Atkinson / International Journal of Multiphase Flow 31 (2005) 25–51
this case the flow rate of liquid is small. When h1 is increased the pressure at the gas entry F is
decreased and by (21) the total flow rate of gas increases. Consequently the gas fraction in the
main riser FG is increased, and the hydrostatic pressure drop along FG is reduced. This would
seem to more than cancel the effect of the increased hydrostatic pressure qLh1g.

We can also make analytic progress in the limit G� 1. Differentiating (31) with respect to ĥ1 we
find
dû21
dĥ1

2bĥ1G

û21S
� 2� 4bS � G2ĥ1b

û41Sð1þ bSÞ2

" #
¼ 2bG

S
þ 2G� G2b

Sð1þ bSÞ2û21
: ð45Þ
The liquid velocity û1 is non-zero if G � 1 < b and is monotonic decreasing if G � 1~ b/2. We
therefore expect a maximum in û21 as a function of ĥ1 if
b ¼ cG; 1 6 c 6 2; G � 1 ð46Þ
and a maximum can be found if the scalings
ĥ1 �
a

2G2
; û21 �

d
2G

ð47Þ
hold, for some unknown a, c and d. From (31) and (45) we find d ¼ 1
4
, so that the maximum veloc-

ity scales as
û21 �
1

8G
: ð48Þ
This is the same as the maximum velocity (37) when h1 = 0. We have only two equations, (31) and
(45), for a, d and c, and so we cannot hope to solve for all three unknowns. All we can say about c
and a is
1þ 4a ¼ 4c�2: ð49Þ
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The bounds on c are such that 0 < a < 3
4
. Thus there is a range of values of b which all lead to a

similar maximum velocity, as can be seen in Fig. 8. We wish the device to operate with h1 suffi-
ciently large that the flow rate decreases as h1 increases, i.e. in the region of Fig. 8 to the right
of the maxima. We conclude from Fig. 8 that it is advantageous to make b as small as possible,
subject to the requirement b > G � 1.

Figs. 9 and 10 show the liquid volume fractions /L in the riser FG corresponding to the cases
considered in Figs. 6 and 8, and Figs. 11 and 12 show the corresponding mixture velocities û3 in
the riser FG. When G = 1.01 and b� 1 the first term on the right-hand side of (31) is small, and so
/L ¼ 1

1þ bS
� 1

G
� h1
h2

: ð50Þ
We see in Fig. 9 that /L does indeed vary linearly with h1/h2. This is not so in the case G = 10
considered in Fig. 10, since the requirement b > G � 1 ensures that the first term on the right-hand
side of (31) can no longer be neglected when G� 1.

As h1/h2 ! G�1 so /L ! 0 and hydrostatic pressures in the main riser become negligible. If we
assume that a2 is sufficiently small that we may neglect the pressure 1

2
qGu

2
2a

2
2 associated with the

gas velocity in the main riser, then in the absence of liquid we expect, from (16), 1
2
qGu

2
2 ¼ P so that

in the main riser
u3 ¼ a2u2 ¼ a2ð2P=qGÞ
1=2

; ð51Þ

i.e.
û3 ¼ b ð52Þ

and we see in Figs. 11 and 12 that this limit is approached as h1/h2 tends to the maximum value
(40) for which liquid is lifted.
4. The effect of multiple holes for gas entry

If the gas entry hole H is placed too low on the riser (Fig. 2), it would be submerged if the liquid
level were to rise too far. Gas entry would be prevented and the device would no longer work. We
now consider whether we could replace this one hole by several holes, distributed along the length
of the riser. This would make the positioning of the holes less critical.

We consider a device with just two holes, as shown in Fig. 13. We look to see whether gas flow
can lift liquid to the level of the lower hole. We shall not investigate flow rates should the differ-
ential pressure be greater than the minimum required for flow just to occur.

Gas enters at the two side ports with no vertical momentum and as in Section 2 the pressure of
the gas at entry is assumed equal to the pressure in the main riser just below the point of entry. We
assume that the external pressure p0 is the same for both side entry ports (i.e. hydrostatic pressures
due to gas density are negligible). The cross-sectional area of the main vertical riser is A1, and the
areas of the gas inlets are A3 = a3A1 and A2 = a2A1.

By Bernoulli, at the entry into the upper port
p2 þ
1

2
qGu

2
2 ¼ p0; ð53Þ
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Fig. 13. A device with two holes for gas entry.
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and at the entry into the lower port
p3 þ
1

2
qGu

2
3 ¼ p0: ð54Þ
The pressure above the column of liquid is assumed to be equal to that in the lower gas entry, and
is therefore p5 = p3. This is lower than p0 as long as u3 > 0. The device will only operate if the pres-
sure difference p0 � p5 is sufficient to lift liquid to the lower of the two gas entry ports. We now
show that p0 � p5 is smaller than the total pressure difference p0 � p1 generated by the Venturi,
and that it is reduced even further by the presence of the additional gas entry port.

The velocity of gas up the main riser is
u4 ¼ u3A3=A1 ¼ u3a3 ð55Þ

just above the lower inlet, and
u1 ¼ A�1
1 ½u3A3 þ u2A2� ¼ u3a3 þ u2a2 ð56Þ
in the upper section of the main riser. The vertical component of the integral form of the momen-
tum equation gives
p5 � p4 ¼ qGu
2
4; ð57Þ
at the lower gas inlet, and, at the upper inlet
p4 � p1 ¼ qGu4ðu1 � u4Þ þ qGu2a2u1 ¼ qG½2u3a3u2a2 þ ðu2a2Þ2�: ð58Þ

We now eliminate velocities in order to obtain an expression for the pressure p5 lifting the liquid in
terms of the pressure p1 generated by the Venturi. From (57), (55) and (54)
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p5 ¼ p4 þ qGu
2
3a

2
3 ¼ p4 þ 2ðp0 � p3Þa23: ð59Þ
But we have assumed p5 = p3 and so
p5 � p0 ¼
p4 � p0
1þ 2a23

: ð60Þ
From (58), (53) and (54)
p4 � p1 ¼ 4a2a3ðp0 � p2Þ
1=2ðp0 � p3Þ

1=2 þ 2a22ðp0 � p2Þ: ð61Þ

Setting p3 = p5, p2 = p4 and using (60) leads to
ðp0 � p5Þ 4a2a3ð1þ 2a23Þ
1=2 þ ð1þ 2a22Þð1þ 2a23Þ

h i
¼ p0 � p1: ð62Þ
This is the key relation which relates the pressure difference p0 � p5 (which lifts liquid), to the pres-
sure difference p0 � p1 generated by the Venturi. If a2 = 0 only one hole is open, and
p0 � p5 ¼
p0 � p1
1þ 2a23

: ð63Þ
If a3 = 1 then p0 � p5 = (p0 � p1)/3.
Suppose now that both holes are open, with a2 = a3, so that, by (62)
p0 � p5 ¼
p0 � p1

ð1þ 2a22Þ
2 þ 4a22ð1þ 2a23Þ

1=2
: ð64Þ
If a2 = a1 = 1 this is p0 � p5 ¼ ðp0 � p1Þ=ð9þ 4
ffiffiffi
3

p
Þ � 0:063ðp0 � p1Þ, which is much smaller than

the pressure p0 � p5 = (p0 � p1)/3 available to lift liquid when there is only one hole. The addi-
tional hole higher up the riser has reduced the extent to which the low pressure p1 in the Venturi
throat is able to influence the pressure p5 at the surface of the liquid.

If both a2 � 1 and a3 � 1 then by (62)
p0 � p5 ¼ ðp0 � p1Þ½1� 2ða3 þ a2Þ2� þOða4Þ; ð65Þ

and by extension we conclude that if gas is allowed to enter through many holes, the sum of their
areas must be small compared to that of the main riser if p0 � p5 is not to become small compared
to the Venturi differential pressure p0 � p1.

We can look at the amount of gas entering the two inlets. By (54)
qGu
2
3 ¼ 2ðp0 � p3Þ ¼ 2ðp0 � p5Þ: ð66Þ
By (53) and (60)
qGu
2
2 ¼ 2ðp0 � p2Þ ¼ 2ðp0 � p4Þ ¼ 2ðp0 � p5Þð1þ 2a23Þ: ð67Þ
Hence
u2 ¼ u3ð1þ 2a23Þ
1=2 P u3: ð68Þ
Thus we see that additional holes tend to reduce the pressure available for lifting liquid. How-
ever, we saw in Section 3 that if the hole is too small a larger hole will increase the amount of
liquid that is lifted, and under such circumstances there might be an advantage to be gained by
allowing additional gas to enter through additional holes.
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5. Pressure losses

The Venturi mixing device lifts and accelerates liquid. This requires energy, which must be sup-
plied by the main gas flow, and we now investigate the consequent reduction in pressure down-
stream of the Venturi. As usual, we neglect any frictional losses, either at the walls of the
device or losses caused by drag forces acting between liquid droplets and gas. We also assume that
the loss coefficient of the Venturi is unity in single phase flow i.e. that there are no losses caused by
separation from the Venturi walls in the diverging section. We return to the case of gas entry at a
single hole, as shown in Fig. 2.

In the riser, the mixture velocity is u3, so that the volumetric flow rate of liquid is
QL ¼ A1u3/L ð69Þ

and that of the gas is
QGr ¼ A1u3ð1� /LÞ: ð70Þ

The total volumetric flow rate of gas is QG, of which QGr flows through the riser and
QGw ¼ QG � QGr ð71Þ

reaches the Venturi directly through the wellbore. The cross-sectional area of the wellbore is Aw

and that of the Venturi throat is Athroat = b2Aw. The gas velocity in the wellbore just below the
Venturi is
v1 ¼ QGw=Aw ð72Þ

and the pressure here is p1.

We assume that the Venturi throat is long, and that the gas/liquid mixture, introduced at the
throat, has time to speed up to the velocity of the main gas flow before deceleration occurs in the
diverging section. For the moment we assume that gas + liquid is injected into the Venturi throat
perpendicular to the main flow, as shown in Fig. 14. The gas velocity in the throat upstream of the
point of injection is
v2 ¼
QGw

Athroat

ð73Þ
and the pressure here is
p2 ¼ p1 þ
qGQ

2
Gw

2

1

A2
w

� 1

A2
throat

" #
: ð74Þ
We assume that the gas/liquid mixture is at the same pressure p2 when it enters the Venturi.
We now use the equation of continuity to evaluate the velocity v4 of the combined liquid/gas

mixture within the Venturi throat after mixing has occurred:
Athroatv4 ¼ A1u3 þ QGw ¼ QG þ QL: ð75Þ
The integral form of the equation for momentum parallel to the axis of the Venturi gives
p2Athroat þ v2qGQGw ¼ p4Athroat þ v4½QGqG þ QLqL�; ð76Þ
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Fig. 14. Injection of the gas–liquid mixture from the riser into the Venturi throat, perpendicular to the main gas flow.
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where the pressure downstream of the entry point is p4. Since v4 > v2 it is clear that p4 < p2 and
pressure has been lost.

The mixture slows down in the diverging section, and attains a velocity v5, density q5 and pres-
sure p5 in the straight section of wellbore above the Venturi, with
v5 ¼
QG þ QL

Aw

; q5 ¼
QGqG þ QLqL

QG þ QL

; p5 ¼ p4 þ
q5

2
ðv24 � v25Þ: ð77Þ
Hence, by (74), (76) and (77),
p5 ¼ p1 �
1

2

1

A2
throat

þ 1

A2
w

 !
ðQG þ QLÞðQGqG þ QLqLÞ � qGQ

2
Gw


 �
: ð78Þ
In the absence of any flow in the riser, QL = 0 and QGw = QG, and (78) predicts p1 = p5. If
/L = 1, so that there is no gas in the riser and QG = QGw, then
p5 ¼ p1 �
1

2

1

A2
throat

þ 1

A2
w

" #
ðQGQLðqG þ qLÞ þ Q2

LqLÞ: ð79Þ
More generally, we see from (78) that the pressure p5 downstream of the Venturi is lower than that
upstream, despite the assumed absence of viscous effects or other losses.

Alternatively, the main riser might discharge liquid in the direction of flow (as in Fig. 2). We
omit details of the analysis, which is similar to that given above. In practice, the injection velocity
u3 and liquid volume fraction /L are such that the pressure downstream of the Venturi is lower
than that upstream in this case also.
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6. The effect of relative velocity between gas and liquid

In Sections 2–5 it has been assumed that the gas and liquid move at the same velocity. If the gas
flows more quickly than liquid, then for given volumetric flow rates of gas and liquid the liquid
holdup in the column will be increased, as will the density of the gas–liquid mixture. We might
therefore expect the efficiency of the pump to be reduced, though the results presented below indi-
cate that this is not always correct.

We adopt a simple model in which the steady upwards velocity uL of liquid and the velocity uG
of gas differ by a constant relative velocity
us ¼ uG � uL: ð80Þ

An obvious estimate for us in a tube of radius r could be based on the rise velocity of a Taylor
bubble: us = 0.48(gr)1/2 which, after non-dimensionalization becomes
ûs ¼ 0:48
grqL

2P

� �1=2
: ð81Þ
Such a choice is easiest to justify in slug flow. In the experiments the gas–liquid flow regime in the
main riser was somewhere between slug and churn flow.

If uL and uG = uL + us are the velocities of gas and liquid in the upper portion FG of the main
riser (Fig. 2), then
/LuL ¼u1; ð82aÞ
ð1� /LÞuG ¼a2u2; ð82bÞ
where the liquid volume fraction /L is obtained by eliminating uL and uG from (82):
/L ¼
�ðu1 þ a2u2 � usÞ þ ðu1 þ u2a2 � usÞ2 þ 4u1us

h i1=2
2us

: ð83Þ
This leads, in the limit us ! 0, to
/L � u1
u1 þ u2a2

þ u1u2a2us
ðu1 þ u2a2Þ3

þOðu2s Þ; us � uL: ð84Þ
The density of the gas–liquid mixture in the upper pipe is
q3 ¼ qGð1� /LÞ þ qL/L � qL/L; ð85Þ

where, as usual, we neglect the gas density in hydrostatic pressures, even though it is important in
Bernoulli�s equation. The momentum equation in the vertical direction at the gas inlet (12)
becomes
pE � pF ¼ qLu1ðuL � u1Þ þ qGu2a2uG ¼ qLu1ðuL � u1Þ þ qGu2a2ðuL þ usÞ: ð86Þ

Combining (8), (9) and (86), the total pressure drop across the device is
P ¼ pB � pG ¼ qLu1ðuL � u1Þ þ qGu2a2uG þ 1

2
qLu

2
1 þ qLgh1 þ qL/Lh2g

¼ qLu
2
1ð/

�1
L � 1Þ þ qGu

2
2a

2
2

1� /L

þ 1

2
qLu

2
1 þ qLgh1 þ qL/Lh2g; ð87Þ
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which after non-dimensionalization using (27) and (28) becomes
Fig
1 ¼ û21 2/�1
L � 1þ 2a22S

2

1� /L

� �
þ G

h1
h2

� �
þ G/L: ð88Þ
In the limit us ! 0, /L is given by (26), so that the governing equation (88) reduces to (29). More
generally, we may use (21) to eliminate u2 from the expression (83) for the liquid density:
2/L ¼ 1� xð1þ bSÞ þ ð1� xð1þ bSÞÞ2 þ 4x
h i1=2

; ð89Þ
where x ¼ u1=us ¼ û1=ûs.
If we assume a22 � 1, the governing equation (88) reduces to
1 ¼ û21½2/
�1
L � 1� þ G

h1
h2

� �
þ G/L; ð90Þ
which in the limit us ! 0 reduces to (31).
The governing equation (90) can be solved by means of a Newton–Raphson iterative proce-

dure. Typical results are plotted in Fig. 15 for the case G = 2, b = 2.73. The liquid velocity u1
is reduced somewhat when h1 � h2 and the liquid volume fraction /L is large. Hydrostatic pres-
sures are not negligible, and an increase in the liquid volume fraction reduces the pressure avail-
able to lift liquid. However, when h1 becomes larger the liquid volume fraction becomes smaller
and hydrostatic pressures are less important. Other things being equal, if the liquid velocity above
the point of gas entry is reduced relative to the gas velocity, the inertial pressure required to accel-
erate the liquid becomes smaller. This reduction dominates the increase in hydrostatic pressure,
and allows a minor increase in the liquid volumetric flow rate.

Results were found by an iterative technique, starting at h1 = 0. At h1 = 0 no solution could be
found above some maximum relative velocity (ûs ¼ 0:49 when b = 2.73). This relative velocity
may be compared to velocities in the absence of relative motion: if ûs ¼ 0, G = 2, h1 = 0, then
û3 ¼ 1:0 when b = 2.73. No attempt was made to investigate the domain over which solutions
could be found when h1 > 0. In particular, for larger values of h1, where velocities û3 are typically
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larger, the predicted velocity û1 appears rather insensitive to ûs and there may be solutions for lar-
ger values of ûs than those shown in Fig. 15.
7. Experiments

In practice it is undesirable to block a wellbore any more than is necessary, so the design of Fig.
2, in which the main riser occupies part of the Venturi throat, is to be avoided. Fig. 16a shows an
alternative configuration in which the Venturi is straight (minimizing pressure losses) but the riser
does not enter the throat of the Venturi and therefore does not take advantage of the minimal
pressure there. Fig. 16b shows the configuration adopted for the experiments presented here,
which used a standard 3 in. ISO Venturi with diameter ratio b = 0.455. The main riser, of internal
diameter d1 = 9mm, turned through 30� before entering the Venturi throat via an aperture of
length 46mm. The large opening and gentle bend reduced pressure losses compared to those
found with a sharp 90� bend. Further work could be done to modify the liquid injection in order
to reduce the size of the aerosol droplets and improve their transport upwards in the main gas
liquid

gas

Venturi
throat

gas flow

gas

liquid

gas

Venturi
throat

gas flow

gas

(a) (b)

Fig. 16. (a) A modified geometry which, unlike that of Fig. 2, leaves the Venturi throat clear. (b) The configuration
used in the experiments reported here.
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flow. Much is known about atomization (Lefebvre, 1989); however, more complicated nozzles are
likely to reduce the pressure available for lifting liquid from the bottom of the well.

The Venturi vented to the atmosphere. The absolute pressure pG in the Venturi throat was typ-
ically 1bar, and the differential pressure P = pB � pG between the inlet and throat could be as
much as 1bar. The neglect of gas compressibility is therefore a poor approximation. However,
in the analysis of Section 3 the gas density enters through b = a2(qL/qG)

1/2, and so results vary
only slowly with qG. In the experiments the gas was air, at temperature approximately 15�C.
For modelling, the density of the air was taken to be qG = c1p/T (Kaye and Laby, 1995), where
c1 = 0.00348kgm�3KPa�1, at absolute temperature T = 288K and at the upstream absolute
pressure p = PB = P + pG, with pG = 1bar.

The liquid was water, with density qL = 1000kgm�3 and viscosity lL = 10�3Pas. At the base of
the apparatus was a water reservoir with two water level sensors with vertical separation 200mm,
corresponding to a 0.004m3 change in the volume of water. The distance h1 between the gas inlet
hole and the surface of the water therefore varied between 330 and 530mm. This variation made
little difference to the pressure P available for lifting liquid, since hydrostatic pressures in the gas
(which affect pB) are negligible. However, changes in h1 caused changes in the liquid flow rate u1
and the experimental results reported below are averages over the period of each test. An average
distance h1 = 430mm was used for the predictions presented in Figs. 17–20. The air/water mixture
was raised a distance h2 = 2770mm.

In the model, gas enters the main riser through a pipe AF; in the experiments this was replaced
by a circular hole in the riser wall. Experiments were performed with no hole at F (i.e. a2 = 0), and
with holes of diameter d2 = 3mm or d2 = 5mm, corresponding to a2 ¼ d2

2=d
2
1 ¼ 0:11 or a2 = 0.31.

Fig. 17 shows the measured rate QL at which liquid was raised, as a function of the measured pres-
sure difference P generated by the Venturi. The incompressible result (17) would have to be mod-
ified to include the effect of compressibility if used to predict P. However, pressures at the bottom
of a gas well tend to be much larger than those used in the laboratory tests reported here, and the
effect of compressibility would be correspondingly smaller. At the highest flow rates used in
the experiments, the gas velocity in the throat of the Venturi reached 320ms�1, and flow was
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Fig. 17. Liquid volumetric flow rate QL as a function of the differential pressure P generated by the Venturi. Model
predictions: (a) no hole for gas entry, (b) gas entry diameter d2 = 3mm, and (c) d2 = 5mm. Experimental values: (d) ,
no hole, (e) s d2 = 3mm, and (f) n d2 = 5mm.
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Fig. 19. Liquid volumetric flow rate QL as a function of the differential pressure P generated by the Venturi, with a hole
of diameter d2 = 3mm for gas entry. (a) Model predictions without any correction for viscous losses. (b–d) Predictions
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probably choked. This did not appear to have any effect on the entrainment of the gas/liquid mix-
ture from the main riser.

We see from the experimental results of Fig. 17 that there is a minimum pressure
P = qLg(h1 + h2) = 31kPa below which no liquid can be raised unless a2 > 0. Also shown on
Fig. 17 (curves a–c) are the predictions of the model. Although the general trends are correct,
the predicted flow rates are in all cases higher than those observed experimentally. One reason
for this is the neglect of pressure losses at entrances and corners; another reason is the neglect
of viscous pressure losses within the device, which we now consider.

Single phase flow of fluid with viscosity l and density q within the riser of diameter d1 can be
described in terms of the Reynolds number
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Fig. 20. The liquid volume fraction /L predicted when turbulent pressure losses are based on the volume-averaged
viscosity (96). (a) Gas entry diameter d2 = 3mm, corresponding to curve (b) of Fig. 18; (b) d2 = 5mm, corresponding to
curve (c) of Fig. 18.
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Re ¼ qUd1=l; ð91Þ

where U is the mean fluid velocity. A simple correlation for turbulent frictional pressure drop Dpf
in a pipe of length h is (Millar, 1983)
Dpf ¼ 2qLU
2fh=d1; ð92Þ
where the friction factor
f ¼ 0:079Re�1=4 ð93Þ

so that the pressure drop is
Dpf ¼ 0:158
hU 7=4q3=4l1=4

d5=4
1

: ð94Þ
When a2 = 0 there was no gas within the riser. We set l = lL, q = qL, and find that the flow rate
QL = 0.8m3h�1 corresponds to a velocity u3 = 3.5ms�1 at Reynolds number Re = 3 · 103. We
conclude that flow was turbulent, so that viscous pressure losses can be estimated by (92). Once
the flow rate had been predicted by the model of Section 3, the additional pressure required to
overcome viscous losses was added to the inviscid pressure drop, with the pipe length
h = h1 + h2 taken to be 3.2m. The turbulent correlation (94) was used in all cases: when at low
Reynolds number the flow is laminar, pressure losses are small and errors in their estimation
are of little importance. The predictions of this modified analysis, shown in Fig. 18 (curve a),
are in good agreement with experiment.

When a2 > 0 gas enters the main riser. Much less is known about turbulent pressure drop in gas–
liquid flow than in single-phase flow. A simple modified form of the correlation (94) was therefore
used. The analysis of Section 3 predicted the volume fraction /L of liquid in the gas–liquid mixture,
and the liquid density qL in (94) was replaced by the volume-averaged mixture density
q ¼ /LqL þ ð1� /LÞqG: ð95Þ
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The fluid viscosity l was similarly taken to be the volume average
l ¼ /LlL þ ð1� /LÞlG ð96Þ

with the viscosity of air lG = 18lPas (Kaye and Laby, 1995). This volume average has no phys-
ical justification, but the choice is relatively unimportant since the correlation (94) does not
depend strongly on viscosity l.

The height h in the expression (94) for turbulent pressure loss was taken to be the length of pipe
above the point of gas entry (2.77m); losses in the lower 0.43m liquid-filled portion of pipe (DE in
Fig. 2), where velocities are smaller, were neglected. We see from Fig. 18 that the predictions
(curves b and c) are in agreement with the experiment. Given the crudeness of the model for tur-
bulent pressure losses, such good agreement seems somewhat fortuitous. Gas is likely to be the
continuous phase in the mixture, so that the volume-averaged viscosity (96) and the correspond-
ing friction pressure loss (94) are probably too high. However, this compensates for the neglect of
pressure losses at the point of gas entry into the rising liquid and for losses at the bend just before
the gas–liquid mixture enters the Venturi throat.

We see from (94) that the turbulent viscous losses do not depend strongly on viscosity. Fig. 19
(curve a) shows the volumetric flow rate QL predicted in the absence of viscosity, together with the
experimental results (labelled e). Also shown are the flow rates predicted when the turbulent pres-
sure loss (94) is included, with the mixture viscosity taken to be either (b) the gas viscosity lG, (c)
the mixture viscosity (96) or (d) the liquid viscosity lL. The volume fraction of liquid is always
small. Fig. 20 shows the predicted /L as a function of the differential pressure P when the average
viscosity (96) is used.

Once gas enters the main riser the velocity u3 depends not only on the liquid flow rate QL but
also on the liquid volume fraction /L. When P = 80kPa the model predicts QL = 0.39m3h�1 and
/L = 0.15, so that u3 = 11ms�1; churn flow was observed. The density q3 of the mixture is given
by (5), and the mean bulk modulus is
K3 ¼
/L

KL

þ 1� /L

KG

� ��1

; ð97Þ
where the isothermal bulk modulus of the gas is KG = p and the bulk modulus of the liquid is
KL � KG. This leads to an estimate for the isothermal sound velocity,
c � p
qL/Lð1� /LÞ

� �1=2

; ð98Þ
which gives c � 28ms�1 at p = 1bar and /L = 0.15. We conclude that flow in the main riser was
unlikely to be choked in the experiments. However, this possibility ought to be checked when a
practical design is attempted.
8. Concluding remarks

The results presented in Section 3 assumed qG � qL and a2 � 1. These assumptions were made
in order to reduce the number of independent governing parameters from four, namely G, qL/qG,
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h1/h2 and a2 to three: G, h1/h2 and b = a2(qL/qG)
1/2. If qG/qL is known (but not necessarily small),

it is straightforward to solve (29) numerically and thereby investigate the effect of varying a2; there
is no need to work solely with the combination b = a2(qL/qG)

1/2.
We have not attempted to estimate the rate at which liquid will return to the bottom of the well

via thin films on either the wall of the wellbore or the wall of the riser FG. In a long wellbore the
probability of a liquid droplet hitting, and being captured by such a wall film is large. There also
remain technical design issues related to the best way to inject gas into the main riser, which we
have not addressed here.

A flow of gas is required to generate the differential pressure P that drives the device, which
must therefore be installed and in operation before the liquid level at the bottom of the well rises
so far that gas flow is blocked.
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